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Abstract—Based upon the solutions obtained by using Stroh's formalism, a general and simplified
formula for polygonal holes in anisotropic media is provided in this paper. The polygon used here
is a generalized terminology which covers ¢llipses, polygons and their geometric limits. For some
special holes such as ellipses. circles, cracks, triangles, ovals and squares. a further simplified solution
is derived. The validity of these formulae is then discussed bused on the satisfaction of conformal
mapping requirement. The results show that the solutions are exact for (1) anisotropic media
containing elliptic holes or cracks. and (2) isotropic media containing general polygonal holes. For
general anisotropic media with polygonal holes, the solutions are well approximated if the critical
points of the mapping functions are far away from the holes.

1. INTRODUCTION

Because of the anisotropic nature of composite materials, stress concentration due to the
presence of holes may be substantially higher in composites than for an equivalent metallic
structure. Also, fiber composites generally exhibit near-linear clastic behavior in failure.
Thercfore, the combination of high stress concentration and the absence of ductile yielding
means that composites are relatively intolerant of overloads. Because of this, the study on
stress concentration becomes an important topic for composite materials. By classical
lamination theory (Jones, 1975) which assumes a rigid bond between adjacent laminae, the
composite materials may be modeled as an anisotropic medium. Hence, the study of holes
in anisotropic media is critical for the understunding of stress concentration on composites.

Scveral works such as Savin (1961), Lekhnitskii (1968) and Gao (1991) have been
presented in the literature about polygonal holes in isotropic or anisotropic media. However,
no exact solutions have been provided for the anisotropic media containing polygonal holes
due to the problems of nonconformal mapping. In my recent work (Hwu, 1990), a general
and unified solution for anisotropic media with various openings under uniform loading or
pure bending has been obtained in an explicit form by using Stroh’s formalism (Stroh,
1958). In addition, a real expression has been found for the hoop stress along the hole
boundary, which is important for the understanding of anisotropic effect on the stress
concentration. Similar to those presented in the literature, the solutions for some openings
are not exact due to the fact that the requirement of conformal mapping is not satisfied.
Hence, it is interesting to know when the formulae are exact and when they are well
approximated. In this paper, we list formulae for polygonal holes in detail, discuss their
validity, and verify the discussion by some numerical data. Here, the shape of polygon
include ellipses, circles, cracks, triangles, ovals, squares, pentagons, etc. The results show
that the solutions are exact for (1) anisotropic media containing elliptic holes or cracks,
and (2) isotropic media containing general polygonal holes. For general anisotropic media
with polygonal holes, the solutions are well approximated if the critical points of the
mapping functions are far away from the holes.

2. POLYGONAL HOLES IN ANISOTROPIC MEDIA

.Solutior?s to the two-dimensional problem of a polygonal hole in an infinite anisotropic
medium subjected to uniform loading or pure bending have been obtained by Hwu (1990)
through the use of Stroh’s formalism. The contour of the hole considered is represented by
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where 0 < ¢ < 1. and k& is an integer. When ¢ = 0 we obtain an ellipse with semiaxes ¢ and
ac. By letting ¢ be equal to zero, an elliptic hole can be made into a crack of length 2a. In
the case that € # 0. a polygon with &+ | edges may be obtained by properly choosing the
shape parameters a. ¢, € and k. Hence. the polygonal holes discussed throughout this paper
include ellipse, circle. crack, triangle, oval, square, pentagon, etc.

2.1. Uniform louding
The full field solutions of the displacements and stresses for the anisotropic media
containing a hole under uniform loading (t.t7) at infinity are

u=u"+2 Y Re{A Da)l. ¢=¢"+2 Y Re!BC, Hq). (2a)

I=1k {= 1k
where
q, = —aB () —icty), qu = —laeB oty +it)). (2b)

Re denotes the real part of a complex number. The angular brackets ) stand for the
diagonal matrix, i.c.

o =diaglfi /2 ]

in which cach component is varied according to the Greek index 2. u and ¢ represent
the displacement and stress function, respectively. The supersceript - denotes the value at
infinity. A and B are 3 x 3 complex matrices composed of clasticity constants. , ts related
to o, (=.x,+p,x;) by the following transformation function:

a | ' o
2= - {(l ~il)x(.);x+(l +ipxc)C +l:(l +lpx)§: +H(l —l/).‘)’”\} ’

x S

where p, is the matenal eigenvalue.
As for the hoop stress o, along the hole boundary, a real form solution has been
obtained as follows:

a,, = n' (t,, t, =cos Ot +sin 0t}

! . . s
+ -NyL pcosO—(1+c)asin ]ty +[psin 0+ (1 +c)acos el ]
Fy
+[NT(0)=N;(O)SL ']{ —sin 0t] +cos 0t; |, (4)
where N,(0). i = 1, 2, 3 and S, L arc 3 x 3 real matrices composed of elasticity constants.
n(8) is the unit vector tangent to the hole boundary. § is the angle directed counterclockwise
from the positive x,-axis to the direction of n(f), which is related to ¢ by

p cos 0 = a(sin Y +kesin ky), psinb = —a(ccosy —kecosky). (5a)

where
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p? = a*{k*c* +sin? Y +c* cos® Y +2ke sin ¢ sin ky —2cke cos Yy cos kyy}.  (5b)

2.2. Pure bending
The full field solutions of the displacements and stresses for the hole subjected to pure
bending M in a direction at an angle a with the positive x,-axis, are

u=u”+2 Y Re{AiDq), ¢=9¢*+2 Y Re{B{Dq),  (63)
I ranre

where

q = *A::;:(C/'HSI)B— ‘n(a), (6b)

and

i \ , —C .
c; =3[l—c‘—(l+¢“)C052a]. S:=7C5m 2a,

ot = g[(l —0)—(1+c)cos 2], s, = % (1+¢) sin 2a,

Cryi =§[l+c)—-(l-—c)C052a]. Se s =‘§(I"C)Sin 2!1,
Cu = — A:,—Z-cos 2a, Sy = 5 sin 2o, (6¢)

I is the moment inertia of the plate cross section normal to the loaded axis. A real form
solution for the hoop stress a,, along the hole boundary has been obtained as

ann/ (?) = s§cos? (0—a)+ %n*(o)m(o)n— 'n(2)+ %nT(O)[NT(O)-Ns(O)SL‘ In(@),

(7a)
where
58 = sin (Y —x)—e sin (kyy + o) — (1 —c) cos asin ¢,
s*=— Y (e, sin by +s5, cos ),
fm2k -1
k+1,2%
= - Z I(s; sin iy + ¢, cos hp). (75)
=2k -1
k+ 1,2k

Note that the solutions presented in (2) and (6) are much simpler than those shown in
Hwu (1990) since the following identities

AT+BTL-'ST = {B"', 2B'L-'=iB"',

which can easily be derived by the definitions of S and L, have been used to simplify the
formula.
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3. FORMULAE FOR HOMOGENEOUS MEDIA

For a plate without any holes subjected to an external loading applied at infinity, the
displacement u* and stress function ¢*, which are necessary for the completeness of the
formulae. can be determined by the following procedures :

(1) The stress field g, is obtained under the requirements that the infinity loading
conditions and the equilibrium equations should be satistied. Moreover. for two-dimen-
sional problems. ¢ have to be prescribed in such a way that €5, = 0.

(2) By o, = — ¢, and 5,, = ¢, . integrations of the stresses with respect to x, and x,
will lead to the stress function ¢ ©.

(3) The associated strain field ¢ 1s then obtained by using the reduced constitutive law
which implies that €5, = 0 and 1s expressed as

&=y S0, i#3. {(Sa)

j= 3

where S, is the reduced elastic compliance and is related to the compliance S, by

S,, - S,I_S,}S),,/S\l- (\\’h)

& and a, ranging from | to 6 are the contracted notations of &, and a,,. The correctness of
; and @, should be checked by the following compatibtlity equations:

Ceay o Qe
N T 50T
[SA W (X>
. o )
, Oy ¢y, 3ean
- -~ - b 3
ox, 0, ax; axy

It the compatibility equations are not satisfied, one should return to step (1) and look for
another possible equilibrated stress o). If no solutions can satisfy all the above require-
ments, the assumption of two-dimensional deformation should be modified, which will not
be considered in this puper.

(4) The displacement u® is then obtained by integration of the following reduced
strain displucement equations for two-dimensional problems,

u, u, Ju, Qu, cuy Cu,
£y =y, b= i, &2 = 57 PR ey = 5o by =
ox, Cx, dx,  Cx Ox, vy

That 1s,

u, = JEII de,, u,= Jen dx,, uy, = JZEM dx, (10a)

in which the integration constants can be determined by

4 ol

Cu Sus ou

ey, = ;~~I~ + 5, 2= 3‘“}“~ (10b)
ox,  dxy VRS

and the neglect of rigid body translation and rotation.
By the procedures described above, we now list the solutions of u™, ¢~ for the two-
dimensional anisotropic plate without holes subjected to uniform loading or pure bending

at infinity.
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3.1. Uniform loading

u* = x e +x:87, @F = x| tT —x,t], (lla)
where
T o3 Ev 3,
tr =405 tT =So%r. e =3¢eTa (. & =9{&h (11b)
O'Tx O':Ix 28?3 28;;

In the above. 6 are given and &7 can be determined by using the reduced stress—strain
relation (8). The simplified solutions for some special loading conditions are listed in the
following.

3.1.1. Unidirectional tension. (67, = 6* cos’ a, 6% = ¢” sin* 2, 67, = 6 cos 2 sin &)

ty =07 cosan(x), t¥ = g™ sin an(x),

&/ = a"{cos’ aS, +sin’ aS, +cos a sin aS,},

¢! = g°{cos’ aST+sin’ aS% +cos a sin aS?}, (12a)
where
5 1&
g ZSm
S, ={1$.t, s*={8,}. i=1L26 (12b)
“5: S4l

3.1.2. Biauxial loading. (o, = o{, 63, = 67)

t; =ofi,, ty =a1i,, & =0d7S,+07S,, &7 =a7St+07SY, (13a)
where
| 0
i, =407, i,=<1;. (13b)
0 0

t|‘" =Tti2‘ t; =1’1'i|' B'ID =T'°Sm 8{1 =rns:_ (14)

3.1.4. Anti-plune shear. (a7, = 1° or 63 = %)

tP =1"i;, ty =0, ef =1t"S;, eF =1*S%, (15a)
or
tr =0, tI=1"i;, ef =1t°S,, ef =1°S}, (15b)

where
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|

i, = Oj,‘ (15¢)
]
3.2. Pure bending
. =M
u* = 57 (sin au? 4-cos xu’)
-‘[ fory =0, {16a)
- = —ﬁ—(.n sSin 2 — X, cos %) n(x)
where
}'I»Vf“7':-Y§ — (2710 Fyex)N,
u;y = (76%y +2'/':-\':).\'1 Loy = }'l‘\'%_7'2-‘§ . (16b)
(7sv1+27.x0)x, —;'J-Vg
and

70 = 8,008  x+8, sin” x+ S, cosxsinx, f=1,24,56, v =7y,sinx+7,Cos %
(16¢)
The condition y = 0 will always be satisfied for monoclinic matcerials, By a similar ap-

proach, onc can obtain the solutions for 7 # 0, in which the additional term such as
(axi+by,x:+cxdiy should be considered in ¢ .

4. FORMULAE FOR SOME SPECIAL HOLES

4.1. Elliptic holes or cracks (¢ = 0)
When & = 0, the contour of the holc shown in (1) can be written as

XNy = acosy, X, = ucsiny. (17

The transformation function given in (3) becomes

a ]
L= {(l —ip,)g+ (L+ipe) }
Gz

or

- :i_ 2 i 22
¢, = ._*,i'_.\../..,i..,ﬂfff S'Tt&‘(‘“‘)- (18)
all —ip,¢)

The square root of a complex number has two distinct values. Hence, ¢, given above
has two distinct values. Neglecting the one located inside the unit circle, we get a single
value (..

4.1.1. Uniform loading. The general solutions shown in (2) and the hoop stress shown
in (4) can be simplified by using ¢ = 0 and (5a).
The results are
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u=u”—aRe {A{; " DBI(tF —ictT)},
¢ = 6= —aRe (B OB (t5 —ictD)},

. 1
O = c0s8{c" —ca'” + 6"} +sin b {a‘:‘” - o —a">, (19a)

where

d” =nT@O . " =n"ON(O)—-N,SL'|t, ¢ =a"(@N,(OL 't*. i=12.
(19b)

For the case of unidirectional tension, the hoop stress can be further simplified as
2 L 1 H {3) 1 (1)
Gnm/0™ = cos® (@ —a)—{ccos O cos 2+ z sin @ sin a}a}? —sin (0—a)ol", (19¢)

where
oy’ =" (O)[NT(O)—N(O)SL™ 'In(«), 6t = " (ON,(O)L ™ 'n(a). (19d)

For isotropic materials, we have (Hwu, 1990)

o) =sin(0-x), o\ = —2cos (0-2x),

and hence,
1
Cpf0® = = 14+2(1 +¢) I:cos 0cosa+ Esin 0 sin a] cos (0 —a), (19¢)

which is identical to the one shown in Muskhclishvili (1953).

For circular holes, the solutions can simply be obtained from the formulae given in
(17)-(19) with ¢ = 1. With this substitution, many equations can be simplified such as
Y =0+mn/2, p=u,ectc.

An elliptic hole can be made into a crack of length 2a by letting ¢ be equal to zero.
From (19) with ¢ = 0, one obtains the solutions for crack problems:

u=u“—aRe (A DB, ¢ =9 —aRe (B DB JtE,  (20)

I 3
Cx = _{::+ Z:Z"'a'}. (20b)

By using (20a); and g,, = ¢, with x, = 0, |x,| > 4, the stresses g, ahead of the crack tip
along x,-axis can be obtained as

X
0y = —————t?. o2}

Vxi-a?

The above solution shows that the stresses are singular near the crack tip. With the usual
definition, the stress intensity factors are given by
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K
K=¢K = “I_'{l \/(27r(x, —a)g,, = \/%tf. (22)
K”I

lower surfaces of the crack, the crack opening displacements Au are obtained as

Similarly. by using (20a), and setting x, = 0*, |x,| < a where + denotes the upper and

Au=u(x,,0%)—u(x,.07) =2 'a" —xiL" 'tz (23)
In the above, the identity (Ting, 1988)
iAB™' = L™ '"(I+iS")

has been used. By applying the virtual crack closure method (Irwin, 1957). the total strain
energy release rate G can be calculated as

$L'ts = WKTLO'K, 24

l Aa
G=lim ——— f Au' (s —Aa)p'(s) ds = n:lt
]

- Au—0 ZA(I

where s is the distance ahead of the crack tip. For isotropic materials, L is a diagonal matrix
with L|| = Lzz = [l/”! -V, L\\ = M. chcc.

ai
A Z(I—V) /2 2 U;: G I—v ,\'2+K2 l I\'J 25
u= l‘ VT X | ‘ . G= 20 (K] u)+2“ 1 (25)
0y
l—-v °

which is good for the plane strain condition since Stroh’s formalism is derived under the
assumption that &3, = 0. To be applicable for the gencralized plane stress conditions, a
reduced elasticity matrix C;; = C;;— C,;C,/Cy, should be used.

4.1.2. Pure bending. The general solutions shown in (6) and the hoop stress shown in

(7) can also be simplified by using ¢ = 0 and (54). The results are

Ma* ;
u=u"+ —7515 Re {(c, +is) AL DB in(a),

Md* ,
b =97+ Re (e +is) B, B ' n(a),

174 . a
O L sgcos® (0-2)+ 5= (c*o!” +5%aY), (261)
| 2p

where
s =sin (y —2)—(l —c) cos asin ¢,

*

-1 , 5 . .
s ‘—7——[1 —c?—=(l —=¢)” cos 2x] sin 2¢ + ¢ sin (24 + 2a),

—Tl[l —cr—(1=¢)? cos 2a] cos 2y + ¢ cos (Y — 2a), (26b)

-~

and



Polygonal holes in anisotropic media 2377

asiny =pcosf, —accosy =psinf, p=a/sin*y+cicos’y. (26

By following a similar procedure to that in Section 4.1.1, the solutions for the cracks
subjected to pure bending are obtained as

x

M(a sin 2)*
—_

o2 -
a7 Re {AKT DB n(a),

M(a sin 2)°
T+_¥

¢p=9¢ Re {B{(;*)B~'In(2),

al
M in® — M sin? i
K= ——"-—2’;“—5"'—5n(a). Au = —~;’“—3x.\ /2~ <L "n(x). @7

It can be seen that Au, will always be negative in either —a < x, <0or 0 < x; < aif the
second component of L~ 'n(x) is not equal to zero, which violates the assumption of fully
open crack and the solution is invalid. For this condition, one may assume that the crack
is not fully open but with partial contact near the crack tip. If {L~'n(2)};y =0, Au; =0
for all x, within the crack and hence there is no tendency for the crack to open or close.
However, a relative tangential displacement may exist between the crack faces. Therefore,
(27) is valid if Au, = 0 or the negative Au, 1s increased to a positive value by an applied
tensile load.

4.2. Triangular holes (k = 2)

When ¢ = 1 and & = 2 the hole has three symmetry axes. With an appropriate selection
of the parameter ¢, the opening will differ little from an equilateral triangle with rounded
corners. The transformation function given in (3) with & = 2, in general, is not a conformal
mapping function unless p, = i which is the eigenvaluc of isotropic materials. A single-
valued {, is then obtained by neglecting the values located inside the unit circle for isotropic
materials. For general anisotropic materials, there will be two distinct {, located outside
the unit circle. We may choose the one nearest |{] = | as the mapped point. Hence, the
entire z-plane is now mapped onto part of the {,-plane with a one-to-one transformation.
The triangular hole is then mapped onto the unit circle and |{,] - oo when |z| - a0 is also
satisfied. However, the {, values may be discontinuous near the critical point {,, which may
cause the discontinuity of displacements and stresses. This discontinuity will be discussed
in the next section. The definition of the critical point is (dz,(,)/d,); ¢, = 0.

Similar to the procedure used in the case of elliptic holes, the solutions for triangular
holes can be written as follows.

4.2.1. Uniform loading.
u=u*—aRe{A(; " )B (7 —ict?)} —ae Re (AL DB (62 +it7)},

¢ =u”—aRe{B{ DB ' (tF —ict?)} —ae Re (B 2B (t7 +it?)),

. | +c)a .
cos Ol +01" 404 +sin 09 + 09~ LN i Yot cos Yol

Onn

(28)

M 2 4
u=u®+ —211'- T Re{(e+is)ACLYB" In(a),

Ma* ¢

$=0"+7

Re {(c,+is)B(L'YB~ ' Jn(a),
1

[
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/‘ Mua

R a
O ! =sktcos’ (f—2)+ .,;{c‘a‘o‘”+s"o‘0”). (29)

4.3. Oval and square (k = 3)

When ¢ = | and & = 3 there are four symmetry axes and at some values of ¢ the hole
will differ little from a square with rounded corners. If € is positive the apexes of the square
(rounded) are located on axes x, and x,. which consequently run along the diagonals. In
the case of negative ¢ the sides are parallel to the coordinate axes. Whenc < | and k =3
we will obtain ovals of a special type.

Similar to triangular holes the transformation function for oval holes is not a con-
formal mapping in general. The only situation for this to be single-value transformation is
isotropic material. For general anisotropic materials, we choose the one located outside the
unit circle and nearest |{} = 1. The problem of discontinuity will be discussed in the next
section. The expressions of u. ¢ and g, for oval openings subjected to uniform loading are
the same as (28) except that (%) is now changed to ¢{; ') and the relation between ¢ and
¥ should be changed according to (5) with & = 3. For the case of pure bending. the
expressions are exactly the same as (29) except that the index { is now summed for 2, 4 and
6. and the related coeflicients ¢,, 5, { = 2, 4, 6, s8, ¢* and s* should be changed according
to (6¢) and (7b). Note that A — 1 = 2 for & = 3. Hence, the terms associated with & — [ and
2 should be added together such as s, = {—~c+e(l +¢)] sin 2a.

S. VALIDITY AND VERIFICATION
It is well known that the satisfaction of conformal mapping requirement is the key
point for the formulae listed in previous sections to be valid. Hence, it is interesting to know
when they will be satisfied, and when they are well approximated if they are not satisfied.

5.1, An anisotropic plate with elliptic holes (p,: complex, &€ = 0)
The transformation function for this condition has been given in (18). The roots of
dz,(C,)/dE, = 0 arc at

., I+ipe
=00
I —ip,c

If pou. pu are, respectively, the real and imaginary parts of p,, the absolute valuc of {7 is

12| (l_('[7x1)2+(¢'ﬂxk)2
Saf &= 7 2 R

(l +(.pxl).+((.l)xk)

Sincep, > 0and 0 < ¢ < 1, we have [{7] < | which leads to |{,] < 1. The roots are therefore
located inside the unit cirele |,] = 1 and the transformation function (18) is single-valued
and conformal outside the elliptic hole. The solutions provided in Section 4 arc therefore

exact.

5.2. An isotropic plate with polygonal holes (p, = i, £ small)
The transformation function given in (3) can be written as

P 8

Z; =

! 26
{(1+c>;,+u —) -+ } (30)

2 b1 Sx

Differentiating =, with respect to {,. we have
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= 2ek
d- {(He)—(l—c)é—f—ﬂ}-

ds,

[ LS JIR =1

b2 LY

If c = 1, the roots of d-,/d(, are at
gl = ek,

When the small number ¢ is chosen such that ¢ < 1/k, the critical point {, will be located
inside the unit circle |(,] = | and the transformation function (30) is single-valued and
conformal outside the hole. In the case that 0 < ¢ < | and ¢ is comparatively small such
that 2ek/C¢* ! can be neglected. the roots of dz,/d(, are at

which are located inside the unit circle and conformal mapping is obtained. For the other
conditions, one can calculate the critical points {, numerically and check whether |{y] is
smaller than one. From the discussions given above, we know that for isotropic plates the
solutions are exact for most cases.

5.3. Aw anisotropic plate with polyvgonal holes (p,: complex, £: small)
The critical points {4 for the most general conditions considered in (3) are determined
by dz,/d{, = 0, i.c.

ke(l +ip )52 + (1 =ip, ) = (L+ip,o)t ' —ke(1—ip,) = 0.
The product of all critical points is equal to, if ¢ # 0 and p, # §,

n*¢ = I=ips
1= [

T l+ip,’

of which the absolute value is greater than one because the imaginary part of p, is positive.
Therefore, one of the critical points will be located outside the unit circle and (3) is not
conformal outside the hole for general anisotropic materials.

The occurrence of critical points outside the unit circle means that there will be multiple
values of ¢,, corresponding to one point z,, located outside the unit circle. If we designate
the point ncarest the unit circle to be the mapped point, we still have one-to-one trans-
formation. The hole is then mapped onto the unit circle and |{,| = o0 when |z, = o is
also satisfied, which is the requirement for satisfaction of infinity boundary conditions.
However, the {, values may be discontinuous necar the critical point, which may cause the
discontinuity of displacements and stresses. To have a clear understanding of this
phenomena, a typical example is shown below.

Example. k =2.c=1,a=1,¢ =0.25, p, = 0.6 (triangular hole)
The mapping function (3) becomes

o1 { P
-:_2OQ+ 8 C+Z‘2'.

The critical points {4 can be calculated numerically by dz,/d{ = 0. The results are {, = 0.865,
—7.976, —0.444 +0.619i. The plot of this mapping function for real value of { is shown in
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Fig. [ The plot of the transformation function with real values (A =2, ¢ =1, a =1, ¢ = 0.25,
p, = 0.6).

Fig. 1. If only the points on x-axis are considered, Fig. 1 shows that cach point on

x> Y (" = 1.228 is the source point of )" = 0.865) corresponds to four different

points £ (4", ¢4, 0, ) in {-domain, which are all real. It we neglect the points located
inside the unit circle, i.e. {87 and {47, and designate the point nearest the unit circle to be
the mapped point, {{V should be the mapped point chosen for this region. For the range of
NP < v < xt (o = —3.222 is the source point of (P = —7.976), cach point of x,
corresponds to two real points ({87, {4) and a pair of complex conjugates which are located
inside the unit circle and are not shown in this figure since it is a plot of real values. By
neglecting the inside points and choosing the nearest point, the mapped point chosen for
this region should be {4, For the point located in x; < x{”, there are two pairs of complex
conjugates. One is inside the unit circle, the other is outside the unit circle. The latter
represents two different points ¢, and {, which have the same distance to the unit circle. If
¢, is the limiting of the chosen mapped-point corresponding to x/ ., onc may find that { is
the limiting of the chosen mapped-point corresponding to x; . Hence the discontinuity of
displacements and stresses may occur in the range of x, < x{”. In general, if the material
cigenvalue p, is pure imaginary, all coefficients on the right-hand side of eqn (3) are real.
Furthermore, if only the points on the x,-axis are considered, which leads the values of -,
to rcal numbers, all the coefficients of equation (3) are real. Therefore, if {, is a root of eqn
(3). sois {, if {, is not real. The problem of discontinuity may occur if the point nearest
the unit circle is not a real number but a pair of complex conjugates.

The discontinuity of displacement at point x, for the cases of uniform loading can
therefore be written as

Au=ul)-ul,) =2 Y Re{((,'={.)Aq}.

l= |k

Since ¢, /=, 'is pure imaginary if {, is not real, the only condition for the discontinuity to
disappear is that Aq; is rcal. Similarly, for tractions to be continuous at points x . Bg,should
be real. It can easily be proved that the only solution for both Aq, and Bq, to be real is
q; = 0. which gives t;” = t = 0. In other words, for general uniform loading conditions,
the discontinuity of displacements and tractions occurs at the points of x, < x'? along
x,-axis. The solutions provided in previous sections are thercfore not exact. However.,
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Fig. 2. Hoop stress along the trinngular hole under unidirectional tension (k =2, c=1,u =1,
& = 0.25, a = 90", orthotropic materials).

(W=, = 0when({, isreal, ice. in the range x; > x{”, and ;' ={," = 0, when {, — o0, the
discontinuity can be neglected for most ranges of x, since x{” = —3.222 may be treated as
a large number relative to unit. The solutions near the hole boundary may therefore be
approximated to the exact solutions if the critical points are far away from the unit circle.
By comparison with the approximate solutions provided by Lekhnitskii (1968), Figs 2-6
show that these two approximate solutions are almost the same in most cases. Especially,
for the triangular holes under unidirectional tension or pure bending shown in Figs 2 and
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Fig. 3. Hoop stress along the triangular hole under pure bending (k =2. c =1, a= 1, £ = 0.25,
a = 90°, orthotropic materials).
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Fig. 4. Hoop stress along the oval hole under unidirectional tension (kK =3, ¢ =036, a =1,
£ = —0.04, 2 = 90", orthotropic materials).

3, these two soluttons are almost exactly the same. The results provided by Lekhnitskii have
different expressions for ditferent holes, while the solutions presented in this paper have
only one unificd expression for various holes. Moreover, in most cases as discussed
previously, our results are exact. For example, consider an isotropic plate containing elliptic
holes, the hoop stress under unidirectional tension has been given by Muskhelishvili (1953),
which is

& X2 o”
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IE — NV L.
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Fig. 5. Hoop stress along the square hole under unidirectional tension (k =3, c = l,a=1l.& = 1/9,
1 = 0, orthotropic materials).
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Fig. 6. Hoop stress along the squarc hole under pure bending (k =3, c= La=1le= /9,2 =0",
orthotropic materials).

1 =2mcos 2y +m? ’ l+c¢°

VL —=m*+2m cos 2a—2 cos 2() —a) l—c
- (f

Oy =0

nn

An equivalent result shown in (19¢) can casily be simplificd from cqn (4) by substituting
the material propertics of isotropic media, shape parameter with ¢ = 0 and the loading
conditions given in (12a). The big difference is that the equation provided by Muskhelishvili
is valid only for elliptic holes embedded in isotropic media, while eqn (4) is valid for various
polygonal holes in general anisotropic media.

The orthotropic materials used in the above figures are taken as

E| =22x10"p5i. E2=E';=l.54><10°psi, V|2=V|3=V2]=0.28,
GIZ = GIJ = G:] = 081 X ‘Oﬁpsi,

where £, G and v are, respectively, the Young's modulus, shear modulus and the Poisson’s
ratio. The subscripts 1, 2 and 3 denote, respectively, the fiber, transverse and thickness
directions.

6. CONCLUSIONS

General formulae for polygonal holes in anisotropic media are provided in this paper,
from which explicit solutions arc derived for some special holes such as ellipses, cracks,
triangles, ovals and squares. Moreover, the solutions for the homogeneous media subjected
to uniform loading, which includes unidirectional tension (or compression), biaxial loading,
inplanc shear and antiplane shear, and pure bending are derived in detail for the com-
pleteness of the formulae. Due to the nonconformal mapping used in some polygonal holes,
the solutions may not be exact in those cases. However, they are well approximated if the
critical points of the mapping functions are far away from the holes, which has been verified
by comparison with the approximate solution provided by Lekhnitskii (1968).
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