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Abstract-Based upon the solutions obtained by using Stroh's formalism. a general and simplified
formula for polygonal holes in anisotropic media is provided in this paper. The polygon used here
is a generalized terminology which covers ellipses. polygons and their geometric limits. For some
special holes such as ellipses. circles. cracks. triangles. ovals and squares. a further simplified solution
is derived. The validity of these formulae is then discussed based on the satisfaction of conformal
mapping requirement. The results show that the solutions are e~act for (I) anisotropic media
containing elliptic holes or cracks. and (1) isotropic media containing general polygonal holes. For
general anisotropic media with polygonal holes. the solutions are welt appro~imated if the critical
points of the mapping functions are far away from the holes.

I. INTRODUCTION

Because of the anisotropic nature of composite materi'lls. stress concentration due to the
presence of holes may be substantially higher in composites than for an equivalent metallic
structure. Also. fiber composites generally exhibit near-linear elastic behavior in failure.
Therefore. the combination of high stress concentration and the absence of ductile yielding
means that composites are relatively intolerant of overloads. Because of this. the study on
stress concentration becomes an important topic for composite materials. By classical
lamination theory (Jones. 1(75) which assumes a rigid bond between adjacent laminae. the
composite materials may be modeled as an anisotropic medium. Hence, the study of holes
in anisotropic media is critical for the understanding of stress concentration on composites.

Several works such as Savin (1961). Lekhnitskii (1968) and Gao (1991) have been
presented in the literature about polygonal holes in isotropic or anisotropic media. However,
no exact solutions have been provided for the anisotropic media containing polygonal holes
due to the problems of nonconformal mapping. In my recent work (Hwu. 1990), a general
and unified solution for anisotropic media with various openings under uniform loading or
pure bending has been obtained in an explicit form by using Stroh's formalism (Stroh,
1958). In addition. a real expression has been found for the hoop stress along the hole
boundary, which is importanl for the understanding of anisotropic effect on the stress
concentration. Similar to those presented in the literature. the solutions for some openings
are nOl exact due lo the facl that the requirement of conformal mapping is not satisfied.
Hence. it is interesting lo know when the formulae are exact and when they are well
approximated. In this paper, we list formulae for polygonal holes in detail, discuss their
validity. and verify the discussion by some numerical data. Here, the shape of polygon
include ellipses. circles. cracks. triangles. ovals. squares, pentagons, etc. The results show
that the solutions arc exact for (I) anisotropic media containing elliptic holes or cracks.
and (2) isotropic media containing general polygonal holes. For general anisotropic media
with polygonal holes. the solutions arc well approximated if the critical points of the
mapping functions are far away from the holes.

1. POLYGONAL HOLES IN ANISOTROPIC MEDIA

Solutions to the two-dimensional problem ofa polygonal hole in an infinite anisotropic
medium subjected to uniform loading or pure bending have been obtained by Hwu (1990)
through the use of Stroh's formalism. The contour of the hole considered is represented by
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XI = a(cos t/J +t: COS kt/J) }

xc=a(esint/J-t:sinkt/J) .

where 0 < e ~ I. and k is an integer. When I: = 0 we obtain an ellipse with semiaxes a and
ae. By letting e be equal to zero. an elliptic hole can be made into a crack of length 2a. In
the case that I: # O. a polygon with k + I edges may be obtained by properly choosing the
shape parameters a. c. t: and k. Hence. the polygonal holes discussed throughout this paper
include ellipse. circle. crack. triangle. oval, square. pentagon. etc.

2.1. Uniform loading
The full field solutions of the displacements and stresses for the anisotropic media

containing a hole under uniform loading (t r. tf) at infinity are

where

<+"'R,fA<~I> IU = U - L. e I I" x qJi.
h I.k

1J=(r+2 L Re[B«x'>q/;.
I~ I.k

(2a)

(2h)

Re denotes the real part of a complex number. The angular brackets < >stand for the
diagonal matrix. i.e.

in which each component is varied according to the Greek index "t. II and 1J represent
the displacement and stress function. respectively. The superscript f. denotes the value at
inlinity. A and Bare 3 x 3 complex matrices composed of elasticity constants. (x is related
to =x (=x 1 +Pxxc) by the following transformation function:

(3)

where Px is the material eigenvalue.
As for the hoop stress (I"n along the hole boundary. a real form solution has been

obtained as follows:

(I"" := n '(O)t". t" = cos Ot ( + sin Ot';

I
+ N ,(0)1. I{[pcosO-(1 +e)a sin Ip]tF +[p sin 0+(1 +e)acos Ip]t'; j

P .

+[Nl(O)-NJ(O)SL i] (-sin Ot( +cos Ot';}. (ol)

where N,(O). i = I. 2. 3 and S. I. arc 3 x 3 real matrices composed of elasticity constants.
n(O) is the unit vector tangent to the hole boundary. 0 is the angle directed counterclockwise
from the positive xi-axis to the direction ofo(O), which is related to t/J by

pcosO=a(sint/J+kt:sinkt/J), psinf)= -a(ecost/J-kecoskt/J). (5a)

where
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2.2. Pure bending
The full field solutions of the displacements and stresses for the hole subjected to pure

bending M in a direction at an angle !I with the positive xI-axis. are

where

and

u=uX)+2 L Re{A(,~-I)ql}, t/I=t/lX)+2 L Re{B(,;I)ql},
1- O.~.k - 1 1- O.~.k - I

k+ I.~ k+ I.~

(6a)

(6b)

I , ,
C2 = 4[I-c"-(1 +C") cos 2(%].

-c
S2 = 2 sin 20:.

Ck_1 = ~[(I-c)-(I +c) cos 20:]. $k-I = ~ (I +c) sin 20:.

I:
Chi =i[l+c)-(I-c)cos20:].

(6c)

I is the moment inertia of the plate cross section normal to the loaded axis. A real form
solution for the hoop stress ann along the hole boundary has been obtained as

j(Ma) ac· as·annT = s~ cos 2 (0-(%)+ 2p nT(O)N)(O)L -In(!I)+ 2p nT(O)[NT(O)-N)(O)SL -I]n(o:).

(7a)

where

s~ = sin ("'-!I)-I: sin (k"'+o:)-(I-c) cos !I sin "'.

s· = - L '(CI sin '''' +SI cos '1/1).
I-Vt-I
k+I.~

c· = - L '(SI sin '''' +c, cos '''').
J-Vt-I
k+ I.~

(7b)

Note that the solutions presented in (2) and (6) are much simpler than those shown in
Hwu (1990) since the following identities

which can easily be derived by the definitions of Sand L, have been used to simplify the
fannula.
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3. FORMULAE FOR HOMOGENEOUS MEDIA

For a plate without any holes subjected to an external loading applied at infinity. the
displacement u f; and stress function ¢J <.. which are necessary for the completeness of the
formulae. can be determined by the following procedures:

( I) The stress field a,; is obtained under the requirements that the infinity loading
conditions and the equilibrium equations should be satisfied. Moreover. for two-dimen
sional problems. a i; have to be prescribed in such a way that 633 = O.

(2) By a" = -1>i.~ and a,~ = 1>,.,. integrations of the stresses with respect to x, and X2

will lead to the stress function ¢J f;.

(3) The associated strain field £,7 is then obtained by using the reduced constitutive law
which implies that £:, = 0 and is expressed as

6, = L Si;aj • i #- 3.
l-F- J

where 5" is the reduced elastic compliance and is related to the compliance S" by

5" = Si,-S"S"IS".

(Ra)

(Rn)

I:, and (T, ranging from I to 6 an: the contracted notations of F.,/ and (T,/. T11I.: corn:ctncss of
I:,; and (T,; should be checked by the following compatibility equations:

(11: 2 I ('/:'1

(l XI = ifX
2

(1
2

/: I' 17 2
/: II

l -

-DXI(1X2 = Dx;

(l) )

If thl: compatibility equations are not satislied, one should return to step (1) and look for
anothl:r possible equilibrated stress a,;'. If no solutions can satisfy all the above require
ml:nts. thl: assumption of two-dimensional deformation should be modified, whieh will not
be considered in this paper.

(4) The displacement Uf; is then obtained by integration of the following rl:duced
strain displaceml:nt equations for two-dimensional problems.

That is.

(lOa)

in which the integration constants can be determined by

( lOb)

and the neglect of rigid body translation and rotation.
By the procedures described above. we now list the solutions of u', ¢J I for the two

dimensional anisotropic plate without holes subjected to uniform loading or pure bendtng

at infinity.



3.1. Cniform loading

where
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(1Ia)

( lib)

In the above. (1J are given and r:;j can be determined by using the reduced stress-strain
relation (8). The simplified solutions for some special loading conditions are listed in the
following.

3.1.1. Unidirectional tension. «(1fl = (1"'" cos2OC. (12'2 = (1"'" sin z :1:, ufz = u <0 cos 2 sin 2)

tl" = u'" cos cm(2), t;' = u'Xl sin cm(oc),

Ill' = (T" {cos2 ocS I + sin 2 ocSz +cos oc sin ocS 6 },

Il~ = u"'{cos 2 OI:Sr+sin 2 ocS~ +cos oc sin OI:S::-,

where

( 12a)

i = 1,2,6. ( 12b)

3.1.2. Biaxial loading. «(Ttl = a:, a2'Z = an

where

3.1.3. Pure shear. (a12 = r")

3.1.4. Anti-plane shear. «(TIJ = r.c or U2J = rOO)

or

where

( 13b)

( 14)

(15a)

( 15b)
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3.2. Pure bending

where

for i' = O.

( 15c)

( 16a)

and

__ {- (~,i' 1'.~I_~,{/i'.~Z)XZ}
u;: I 1'\ J i z·\ Z •

- i'~x~

(16b)

i' = i' ~ sIn 1. + i' \ cos 1..

( 16c)

The condition y = 0 will always bc satisfied for monoclinic materials. By a similar ap
proach. one can obtain the solutions for i' t= O. in which the additional term such as
(a:d +hx JXZ + ('x~)i \ should be considered in (P' .

4. FORMULAE FOR SOME SPECIAL 1I0LES

4.1. Elliptic holes or cracks (I: = 0)

When /; = O. the contour of the hole shown in (I) can be wrillen as

( 17)

The transformation function given in (3) becomes

a { I }:, =., (I-ip,c)(,+(l+ip,e) , .- ~,

or

_+ /_i _a z( I +pzc~)
lo'" -x '"' -): 1i" = .._ __ .

a(l -ip,c)
( (8)

The square rool of a complex number has lwo dislincl values. Hence. (, given above
has two distinct values. Neglecting the one located inside the unit circle, we gel a single
value C.

4.1.1. Uniform loading. The general solutions shown in (2) and the hoop slress shown
in (4) can be simplified by using f: = 0 and (5a).

The results arc
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u = uX: -a Re {A(C; I )8- 1(tf -ictf)},

q, = q,X: -a Re {8(C; 1)8- 1(tf -ictf)}.
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(19a)

(19b)

For the case of unidirectional tension. the hoop stress can be further simplified as

where

For isotropic materials. we have (Hwu. 1990)

and hence.

(1m.lrr" = - I + 2( 1+ c>[cos 0 cos (X+ ~sin 0 sin (X] cos (0 -(X). (1ge)

which is identical to the one shown in Muskhclishvili (1953).
For circular holes. the solutions can simply be obtained from the formulae given in

(17)( 19) with C = I. With this substitution. many equations can be simplified such as
1/1 = 0+Te/2. P = a. etc.

An elliptic hole can be made into a crack of length 2£1 by letting c be equal to zero.
From (19) with c = O. one obtains the solutions for crack problems:

where

~ I{ ~}(,x = - =.+yz;-a- .
a

(20b)

By using (20ah and (1i~ = cPi.1 with x~ = 0, Ixd > a, the stresses (1/2 ahead of the crack tip
along xI-axis can be obtained as

(21)

The above solution shows that the stresses are singular near the crack tip. With the usual
definition, the stress intensity factors are given by
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(22)

Similarly. by using (20a) I and setting X2 = 0:':. Ix II < a where ± denotes the upper and
lower surfaces of the crack. the crack opening displacements ~u are obtained as

(23)

In the above. the identity (Ting. 1988)

has been used. By applying the virtual crack closure method (Irwin. 1957). the total strain
energy release rate G can be calculated as

(24)

where s is the distance ahead of the crack tip. For isotropic materials. L is a diagonal matrix
with L II = L!! = JI/I-I'. L 1 \ = JI. Hence.

(25)

which is good for the plane strain condition sim:e Stroh's formalism is derived under the
assumption that /:lJ = O. To be applicablc for the generalized plane stress conditions. a
reduced elasticity matrix e'i = C,j-CdC11/CjJ should be used.

4.1.2. Pure hending. The general solutions shown in (6) and the hoop stress shown in
(7) can also be simplilkd by using E; = 0 and (5a). The results arc

(26a)

where

s~ = sin ('" -:x)- (I-c) cos:x sin "'.

s· = =-~[l _c 2 -(I -cf cos 2:x] sin 2'" +c sin (2'" +2:x).
2

and

c· = ~ I [I _ c 2
- (I - C)2 cos 2:x] cos 2'" + c cos (2'" - 2:x). (26b)
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a sin t/J = p cos e. -ae cos t/J = p sin e, p = aJsin 2 t/J +e2 cos2 t/J. (26c)

By following a similar procedure to that in Section 4.1.1. the solutions for the cracks
subjected to pure bending are obtained as

M(a sin ~)2 _
u=ux + 4/ Re{A(I,;2)B- I}n(ct).

M(a sin Ct)2
,p=,px+ 4/ Re{B(,;2)B-I}n(~).

_ -;\la~sin2 Ct _ -Msin 2 ct ~-I
K - 21 n(Ct). dU - / Xly' a -XI L n(ct). (27)

It can be seen that dU2 will always be negative in either -a < XI < 0 or 0 < XI < a if the
second component of L - In(ct) is not equal to zero. which violates the assumption of fully
open crack and the solution is invalid. For this condition. one may assume that the crack
is not fully open but with partial contact near the crack tip. If {L - I n(Ct)}(2) = O. dU2 = 0
for all XI within the crack and hence there is no tendency for the crack to open or close.
However. a relative tangential displacement may exist between the crack faces. Therefore.
(27) is valid if dU2 = 0 or the negative dU2 is increased to a positive value by an applied
tensile load.

4.2. Triangular holes (k = 2)

When c = I and k = 2 the hole has three symmetry axes. With an appropriate selection
of the parameter r.. the opening will differ little from an equilateral triangle with rounded
corners. The transformation function given in (3) with k = 2. in general. is not a conformal
mapping function unless P. = i which is the eigenvalue of isotropic materials. A single
valued (. is then obtained by neglecting the values located inside the unit circle for isotropic
materials. For general anisotropic materials. there will be two distinct (. located outside
the unit circle. We may choose the one nearest 1(1 = I as the mapped point. Hence. the
entire z-plane is now mapped onto part of the (.-plane with a one-to-one transformation.
The triangular hole is then mapped onto the unit circle and 1(.1 -+ 00 when Izi -+ 00 is also
satisfied. However. the (. values may be discontinuous near the critical point (0. which may
cause the discontinuity of displacements and stresses. This discontinuity will be discussed
in the next section. The definition of the critical point is (dz.«(.)/d(.)l c._c" = O.

Similar to the procedure used in the case of elliptic holes, the solutions for triangular
holes can be written as follows.

4.2.1. Uniform loading.

u = u" -a Re {A«(.-I )B-I(tZ' -ietf)} -ae Re {A«(.- 2)B- I(tf +it?>}.

,p = uCc
- aRe {B«(; I)B - I (tf - ictf)} -ar. Re {B«(.- 2)B- I(tf + itf)}.

. (I +c:)o
a"" = cos O[a(IO) + a\3) + a)\)J + Sin O[a~O) + a)31- a(11 I] + [- sin t/Ja~31 + cos t/Ja)31].

p

(28)

4.2.2. Pure bending.

Ma2 4

U = u'" +,....-/ L Re {(C:I + isl)A«(.-I) B- 1}n(ct),
- I-I

Ma2 4

,p =,p'" + II L Re {(cl+isl)B«(;I)B- 1}n(ct),
I-I
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.' Ala , a 1
(1n" -I =s~cos- (8-:x)+ .,-(C·(1~)+S·(1611).

-p
(29)

4.3. Oral and square (k = 3)

When C = I and k = 3 there are four symmetry axes and at some values of £ the hole
will differ little from a square with rounded corners. If e is positive the apexes of the square
(rounded) are located on axes x, and X2. which consequently run along the diagonals. In
the case of negative £ the sides are paral1e1 to the coordinate axes. When c < I and k = 3
\ve will obtain ovals of a special type.

Similar to triangular holes the transformation function for oval holes is not a con
formal mapping in general. The only situation for this to be single-value transformation is
isotropic material. For general anisotropic materials. we choose the one located outside the
unit circle and nearest lei = I. The problem of discontinuity will be discussed in the next
section. The expressions of u. 4J and (1"" for oval openings subjected to uniform loading are
the same as (28) except that G; 2) is now changed to «(; J) and the relation between 0 and
1/1 should be changed according to (5) with k = 3. For the case of pure bending. the
expressions are exactly the same as (29) except that the index I is now summed for 2. 4 and
6. and the related coefficients C,. S;. i = 2.4. 6. s~. c· and s· should be changed according
to (6c) and (7b). Note that k -I = 2 for k = 3. I-lcnce. the terms associated with k -I and
2 should be added together such as s 1 = H- c + t:( I +d) sin 12.

5. VALIDITY AND VERII:ICATION

It is well known that the satisfaction of conformal mapping requirement is the key
point for the formulae listed in previous sections to be valid. Hence. it is interesting to know
when they will he satisfied. and when they arc well approximated if they arc not satisfied.

5.1 . ..11/ anisotropic plate with dbjJ/ic holes (p,: complex. I: = 0)

The transformation function for this condition has been given in (18). The roots of
d:,«(,)/d(, = 0 <Ire at

.' 1+ ip,c
~; = -. .

I-Ip,c

If 1"1.1',1{ are. respectively. the real and imaginary parts of1',. the absolute valuc of (; is

Sinn: pxl > 0 and 0 < C :( I. we have 1(;1 < I which leads to 1(,1 < 1. The roots arc therefore
located inside the unit circle le,1 = I and the transformation function (18) is single-valued
and conformal outside the elliptic hole. The solutions provided in Section 4 are therefore

exact.

5.2. An isotropic plate Irith polygonal holes (1', = i. I:: small)
The transformation function given in (3) can be written as

a { I 21;}:, =., (I +cK,+(I-c)~-+~< .
_ ~~ ~x

Differentiating :, with respect to C. we have

(30)
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d- a{ I 2ek}
d
:'=, (l+c)-(I-c)~2-~k"'I'
'o. - ~. ~.

If c = l. the roots of dz./d~. are at

2379

When the small number e is chosen such that e < Ilk. the critical point (0 will be located
inside the unit circle Ie. 1 = I and the transformation function (30) is single-valued and
conformal outside the hole. In the case that 0 ~ c < I and e is comparatively small such
that 2ek/(:+ I can be neglected. the roots ofdz./d(. are at

which are located inside the unit circle and conformal mapping is obtained. For the other
conditions. one can calculate the critical points (0 numerically and check whether ICol is
smaller than one. From the discussions given above. we know that for isotropic plates the
solutions are exact for most cases.

5.3. An anisotropic plate Il'ith polYl/onal holes (1'.: complex. f.: small)
The critical points (0 for the most general conditions considered in (3) arc determined

by dz./dC ::: O. i.e.

h( I + il'.)(;k + (I - il'.(')(: .. I - (I + il'.(o)(: I - kl:( I - iI',) = o.

The product of all critical points is equal to. if c i:. 0 and p. i:. i.

of which the absolute value is greater than one because the imaginary part of P. is positive.
Thaefore. one of the critical points will be located outside the unit circle and (3) is not
conformal outside the hole for general anisotropic materials.

The occurrence ofcritical points outside the unit circle means that there will be multiple
values of ( •. corresponding to one point z.. located outside the unit circle. If we designate
the point nearest the unit circle to be the mapped point. we still have one-to-one trans
formation. The hole is then mapped onto the unit circle and 1(.1 ..... 00 when 1=./ ..... 00 is
also satisfied. which is the requirement for satisfaction of infinity boundary conditions.
However. the (. values may be discontinuous ncar the critical point. which may cause the
discontinuity of displacements and stresses. To have a clear understanding of this
phenomena. a typical example is shown below.

Example. k = 2. c: = I. a = I. f. = 0.25. P. = 0.6i (triangular hole)
The mapping function (3) becomes

The critical points (0 can be calculated numerically by dz./d( = O. The results are (0 = 0.865.
-7.976. -0.444 ±0.619i. The plot of this mapping function for real value of (is shown in
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~f
•..••..

o'..
o

·,
··

.: (s0 (I) , XI(I))

0:: \
50 100

Fig. I. The pl(ll (,f the transformation function with real values (Ii; = 2. c I. (l = I. 1: = 0.25.
P. = 0.6).

Fig. I. [I' only the points on xI-axis arc considered. Fig. 1 shows that each point on
XI > X\II (X(1 11 = 1.22H is the source point of (\11' = O.H(5) corresponds to four different
points ( ((1111, (lI Cl , (\", ('141

) in (-domain, which arc all real. [I' we neglect the points located
inside the unit circle. i.e. (\c) and ((11), and designate the point nearest the unit cin;1c to be
the mapped point. (11'1 should be the mapped point chosen for this region. For the range of
X\Cl < X, < X\II (X\CI = - 3.222 is the source point of (\/1 = -7.(76), each point of XI

corresponds to two real points «(~I', ('2
21

) and a pair of corn piex conjugates which arc located
inside the unit circle and arc not shown in this figure since it is a plot of real values. By
neglecting the inside points and choosing the nearest point, the mapped point chosen for
this region should be (SII. For the point located in X, < X\cl, there arc two pairs of complex
conjugates. One is inside the unit circle, the other is outside the unit circle. The latter
represents two different points (. and (. which have the same distance to the unit circle. [I'

(. is the limiting of the chosen mapped-point corresponding to xt, one may find that (. is
the limiting of the chosen mapped-point corresponding to x,'. Hence the discontinuity of
displacements and stresses may occur in the range of XI < XI

,21. [n general, if the material
eigenvalue p, is pure imaginary, all coefficients on the right-hand side of eqn (3) arc real.
Furthermore, if only the points on the XI-axis are considered, which leads the values of =,
to real numbers, all the coefficients of equation (3) arc real. Therefore, if (. is a root of eqn
(3), so is (. if (. is not real. The problem of discontinuity may occur if the point nearest
the unit circle is not a real number but a pair of complex conjugates.

The discontinuity of displacement at point x, for the cases of uniform loading can

therefore be written as

~u = u«(.) - u«(.) = 2 L Re {((.' - (.I)Aq,}.
1- I.k

Since (.1 - (.' is pure imaginary if (. is not real, the only condition for the discontinuity to
disappear is that Aql is real. Similarly, for tractions to be continuous at points X I' Bq, should
he real. [t can easily be proved that the only solution for hoth Aq, and Bq, to be real is
q, = 0, which gives t r= t t = O. In other words, for general uniform loading conditions.
the discontinuity of displacements and tractions occurs at the points of XI < X\2) along
X I-axis. The solutions provided in previous sections arc therefore not exact. However.
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LllCHNITSlttl

Fig. 2. I-loop stress along the trianguhlr hole under unidircctiomll tcnsion (k = 2. c = I. u = I.
F. = 0.25. a: = 90". orthotropic matcri;lls).
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c.' -(;' = 0 when C. is real. i.e. in the range Xl> .,fl, and ~;I_(.' -.. 0, when C. - 00. the
discontinuity can be neglected for most ranges of XI since X(I~) = - 3.222 may be treated as
a large number relative to unit. The solutions near the hole boundary may therefore be
<tppn.)ximated to the eX.let solutions if the critical points arc far away from the unit circle.
By comparison with the approximate solutions provided by Lekhnitskii (1968), Figs 2··6
show that these two approximate solutions are almost the same in most cases. Especially.
for the triangular holes under unidirectional tension or pure bending shown in Figs 2 and

Za

PRESENT
LEICHNITSICII

%'1
------H----1---E--1~---

Mall

Fig. 3. Hoop stress along the triangular hole under pure bending (k = 2. c = I. a = I. r. = 0.25.
a: = 9Q

Q
• orthotropic materials).

SAS 29: 19-£
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PRUENT
LSI:HNITSItIl

----..".. ..-:;~

-+---I-------...;-,.-..------I---i---_ Xl

Fig. 4. Hoop stress along the oval hole under unidire<:tional tension (k = 3. c = 0.36. (/ = I.
r. = -O.lJ4. IX = 90"'. orthotropi<: materials).

3. these two solutions arc almost exactly the same. The results provided by Lekhnitskii have
different expressions for different holes. while the solutions presented in this paper have
only one unified expression for various holes. Moreover. in most cases as discussed
previously. our results are exact. For example. consider an isotropic plate containing elliptic
holes. the hoop stress under unidirectional tension has been given by Muskhelishvili (1953).
which is
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Fig. 5. Hoop stress along the square hole under unidirectional tension (k = 3. c = 1. a = I. r. = 1/9.
IX = 0 '. orthotropic materials).
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Fig. fl. Hoop stress along the square hole under pure bending (k = 3. c = t. (/ = t. E = 1/9. !X = 0".
orthotropic materials).

, 1- m Z + 2m cos 2:x - 2 cos 2(,/I - :x)
(1 := fT . _.... --- ---.----- -~-.-" .. --.~---- .......-..--.-..-~~.-,---~.- ,

•• 1-2mcos2"'+m-

I-c
11/=

I+c

An el.juivaknt result shown in (1ge) can easily be simplified from eqn (4) by substituting
the material properties of isotropic medi~l. shape parameter with I: = 0 and the loading
conditions given in (12a). The big dilference is that the equation provided by Muskhdishvili
is valid only for elliptic hoks embedded in isotropic media, while eqn (4) is valid for various
polygonal holes in general anisotropic media.

The orthotropic materials used in the above figures are taken as

E I =22xIO'psi. E2 =E, =1.54x106 psi. VI2=\'13=V23=0.28,

G I2 = G I3 = GZ3 = 0.81 x 106 psi.

where E, G and v are, respectively, the Young's modulus, shear modulus and the Poisson's
ratio. The subscripts I, 2 and 3 denote. respectively, the fiber. transverse and thickness
directions.

6. CONCLUSIONS

General formulae for polygonal holes in anisotropic media are provided in this paper.
from which explicit solutions are derived for some special holes such as ellipses. cracks.
triangles. ovals and squares. Moreover. the solutions for the homogeneous media subjected
to uniform loading, which includes unidirectional tension (or compression). biaxial loading.
inplane shear and antiplane shear. and pure bending are derived in detail for the com
pleteness of the formulae. Due to the nonconformal mapping used in some polygonal holes,
the solutions may not be exact in those cases. However, they are well approximated if the
critical points of the mapping functions are far away from the holes. which has been verified
by comparison with the approximate solution provided by Lekhnitskii (1968).
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